There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(9 - x)}^{ln(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-x + 9)^{ln(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-x + 9)^{ln(x)}\right)}{dx}\\=&((-x + 9)^{ln(x)}((\frac{1}{(x)})ln(-x + 9) + \frac{(ln(x))(-1 + 0)}{(-x + 9)}))\\=&\frac{(-x + 9)^{ln(x)}ln(-x + 9)}{x} - \frac{(-x + 9)^{ln(x)}ln(x)}{(-x + 9)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !