There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{ln(9 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {x}^{ln(-x + 9)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{ln(-x + 9)}\right)}{dx}\\=&({x}^{ln(-x + 9)}((\frac{(-1 + 0)}{(-x + 9)})ln(x) + \frac{(ln(-x + 9))(1)}{(x)}))\\=&\frac{-{x}^{ln(-x + 9)}ln(x)}{(-x + 9)} + \frac{{x}^{ln(-x + 9)}ln(-x + 9)}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !