There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(({x}^{2} + 3a)x)}{({(3{x}^{2} + a)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{3}}{(3x^{2} + a)^{2}} + \frac{3ax}{(3x^{2} + a)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{3}}{(3x^{2} + a)^{2}} + \frac{3ax}{(3x^{2} + a)^{2}}\right)}{dx}\\=&(\frac{-2(3*2x + 0)}{(3x^{2} + a)^{3}})x^{3} + \frac{3x^{2}}{(3x^{2} + a)^{2}} + 3(\frac{-2(3*2x + 0)}{(3x^{2} + a)^{3}})ax + \frac{3a}{(3x^{2} + a)^{2}}\\=&\frac{-12x^{4}}{(3x^{2} + a)^{3}} + \frac{3x^{2}}{(3x^{2} + a)^{2}} - \frac{36ax^{2}}{(3x^{2} + a)^{3}} + \frac{3a}{(3x^{2} + a)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !