There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({x}^{π} + e^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln({x}^{π} + e^{x})\right)}{dx}\\=&\frac{(({x}^{π}((0)ln(x) + \frac{(π)(1)}{(x)})) + e^{x})}{({x}^{π} + e^{x})}\\=&\frac{π{x}^{π}}{({x}^{π} + e^{x})x} + \frac{e^{x}}{({x}^{π} + e^{x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !