There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{4}^{sqrt(x - (\frac{4}{x}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{4}^{sqrt(x - \frac{4}{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{4}^{sqrt(x - \frac{4}{x})}\right)}{dx}\\=&(\frac{(\frac{(\frac{(1 - \frac{4*-1}{x^{2}})*\frac{1}{2}}{(x - \frac{4}{x})^{\frac{1}{2}}})}{(sqrt(x - \frac{4}{x}))} - \frac{(0)log_{4}^{sqrt(x - \frac{4}{x})}}{(4)})}{(ln(4))})\\=&\frac{2}{(x - \frac{4}{x})^{\frac{1}{2}}x^{2}ln(4)sqrt(x - \frac{4}{x})} + \frac{1}{2(x - \frac{4}{x})^{\frac{1}{2}}ln(4)sqrt(x - \frac{4}{x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !