Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {log_{4}^{x - \frac{4}{x}}}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {\left(log_{4}^{x - \frac{4}{x}}\right)}^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {\left(log_{4}^{x - \frac{4}{x}}\right)}^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(\frac{(1 - \frac{4*-1}{x^{2}})}{(x - \frac{4}{x})} - \frac{(0)log_{4}^{x - \frac{4}{x}}}{(4)})}{{\left(log(4, x - \frac{4}{x})^{\frac{1}{2}}(ln(4))})\\=&\frac{2}{(x - \frac{4}{x})x^{2}{\left(log(4, x - \frac{4}{x})^{\frac{1}{2}}ln(4)} + \frac{1}{2(x - \frac{4}{x}){\left(log(4, x - \frac{4}{x})^{\frac{1}{2}}ln(4)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return