There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2{x}^{2} + 3xsqrt(1 - {x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3xsqrt(-x^{2} + 1) + 2x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3xsqrt(-x^{2} + 1) + 2x^{2}\right)}{dx}\\=&3sqrt(-x^{2} + 1) + \frac{3x(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}} + 2*2x\\=&3sqrt(-x^{2} + 1) - \frac{3x^{2}}{(-x^{2} + 1)^{\frac{1}{2}}} + 4x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !