There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (16 - xx){\frac{1}{(4 + 0.25xx)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x^{2}}{(0.25x^{2} + 4)(0.25x^{2} + 4)} + \frac{16}{(0.25x^{2} + 4)(0.25x^{2} + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x^{2}}{(0.25x^{2} + 4)(0.25x^{2} + 4)} + \frac{16}{(0.25x^{2} + 4)(0.25x^{2} + 4)}\right)}{dx}\\=& - \frac{(\frac{-(0.25*2x + 0)}{(0.25x^{2} + 4)^{2}})x^{2}}{(0.25x^{2} + 4)} - \frac{(\frac{-(0.25*2x + 0)}{(0.25x^{2} + 4)^{2}})x^{2}}{(0.25x^{2} + 4)} - \frac{2x}{(0.25x^{2} + 4)(0.25x^{2} + 4)} + \frac{16(\frac{-(0.25*2x + 0)}{(0.25x^{2} + 4)^{2}})}{(0.25x^{2} + 4)} + \frac{16(\frac{-(0.25*2x + 0)}{(0.25x^{2} + 4)^{2}})}{(0.25x^{2} + 4)}\\=& - \frac{-0.5x^{3}}{(0.25x^{2} + 4)(0.25x^{2} + 4)(0.25x^{2} + 4)} + \frac{0.5x^{3}}{(0.25x^{2} + 4)(0.25x^{2} + 4)(0.25x^{2} + 4)} - \frac{2x}{(0.25x^{2} + 4)(0.25x^{2} + 4)} - \frac{8x}{(0.25x^{2} + 4)(0.25x^{2} + 4)(0.25x^{2} + 4)} - \frac{8x}{(0.25x^{2} + 4)(0.25x^{2} + 4)(0.25x^{2} + 4)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !