Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{4π{(1.706x - 0.041{x}^{2} - 3.969)}^{3}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6.62027175466667πx^{3} - 0.159103834666667πx^{3} - 15.402027312πx^{2} - 0.159103834666667πx^{3} + 0.00382371466666667πx^{3} + 0.370154232πx^{2} - 15.402027312πx^{2} + 0.370154232πx^{2} + 35.832735288πx - 0.159103834666667πx^{3} + 0.00382371466666667πx^{3} + 0.370154232πx^{2} + 0.00382371466666667πx^{3} - 0.0000918946666666667πx^{3} - 0.008895852πx^{2} + 0.370154232πx^{2} - 0.008895852πx^{2} - 0.861161868πx - 15.402027312πx^{2} + 0.370154232πx^{2} + 35.832735288πx + 0.370154232πx^{2} - 0.008895852πx^{2} - 0.861161868πx + 35.832735288πx - 0.861161868πx - 83.364669612π\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6.62027175466667πx^{3} - 0.159103834666667πx^{3} - 15.402027312πx^{2} - 0.159103834666667πx^{3} + 0.00382371466666667πx^{3} + 0.370154232πx^{2} - 15.402027312πx^{2} + 0.370154232πx^{2} + 35.832735288πx - 0.159103834666667πx^{3} + 0.00382371466666667πx^{3} + 0.370154232πx^{2} + 0.00382371466666667πx^{3} - 0.0000918946666666667πx^{3} - 0.008895852πx^{2} + 0.370154232πx^{2} - 0.008895852πx^{2} - 0.861161868πx - 15.402027312πx^{2} + 0.370154232πx^{2} + 35.832735288πx + 0.370154232πx^{2} - 0.008895852πx^{2} - 0.861161868πx + 35.832735288πx - 0.861161868πx - 83.364669612π\right)}{dx}\\=&6.62027175466667π*3x^{2} - 0.159103834666667π*3x^{2} - 15.402027312π*2x - 0.159103834666667π*3x^{2} + 0.00382371466666667π*3x^{2} + 0.370154232π*2x - 15.402027312π*2x + 0.370154232π*2x + 35.832735288π - 0.159103834666667π*3x^{2} + 0.00382371466666667π*3x^{2} + 0.370154232π*2x + 0.00382371466666667π*3x^{2} - 0.0000918946666666667π*3x^{2} - 0.008895852π*2x + 0.370154232π*2x - 0.008895852π*2x - 0.861161868π - 15.402027312π*2x + 0.370154232π*2x + 35.832735288π + 0.370154232π*2x - 0.008895852π*2x - 0.861161868π + 35.832735288π - 0.861161868π + 0\\=&19.860815264πx^{2} - 0.477311504πx^{2} - 30.804054624πx - 0.477311504πx^{2} + 0.011471144πx^{2} + 0.740308464πx - 30.804054624πx + 0.740308464πx - 0.477311504πx^{2} + 0.011471144πx^{2} + 0.740308464πx + 0.011471144πx^{2} - 0.000275684πx^{2} - 0.017791704πx + 0.740308464πx - 0.017791704πx - 30.804054624πx + 0.740308464πx + 0.740308464πx - 0.017791704πx + 35.832735288π + 35.832735288π - 0.861161868π - 0.861161868π + 35.832735288π - 0.861161868π\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return