Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{75999.85009cos(x)}{sqrt(154072.92 + 74746.76sin(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{75999.85009cos(x)}{sqrt(74746.76sin(x) + 154072.92)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{75999.85009cos(x)}{sqrt(74746.76sin(x) + 154072.92)}\right)}{dx}\\=&\frac{75999.85009*-sin(x)}{sqrt(74746.76sin(x) + 154072.92)} + \frac{75999.85009cos(x)*-(74746.76cos(x) + 0)*0.5}{(74746.76sin(x) + 154072.92)(74746.76sin(x) + 154072.92)^{\frac{1}{2}}}\\=&\frac{-75999.85009sin(x)}{sqrt(74746.76sin(x) + 154072.92)} - \frac{2840371277.3566cos(x)cos(x)}{(74746.76sin(x) + 154072.92)(74746.76sin(x) + 154072.92)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return