There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(e^{\frac{-(y - {f}^{2})f}{2}})}{({(2df)}^{\frac{1}{2}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{\frac{-1}{2}yf + \frac{1}{2}f^{3}}}{2^{\frac{1}{2}}f^{\frac{1}{2}}d^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{\frac{-1}{2}yf + \frac{1}{2}f^{3}}}{2^{\frac{1}{2}}f^{\frac{1}{2}}d^{\frac{1}{2}}}\right)}{dx}\\=&\frac{e^{\frac{-1}{2}yf + \frac{1}{2}f^{3}}(0 + 0)}{2^{\frac{1}{2}}f^{\frac{1}{2}}d^{\frac{1}{2}}}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !