Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{2})(ln(16d(c + b)(x + b)(x + c + b)) + 4)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln(16dcx^{2} + 16dc^{2}x + 48dcbx + 16dc^{2}b + 32dcb^{2} + 16dbx^{2} + 32db^{2}x + 16db^{3}) + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln(16dcx^{2} + 16dc^{2}x + 48dcbx + 16dc^{2}b + 32dcb^{2} + 16dbx^{2} + 32db^{2}x + 16db^{3}) + 2\right)}{dx}\\=&\frac{\frac{1}{2}(16dc*2x + 16dc^{2} + 48dcb + 0 + 0 + 16db*2x + 32db^{2} + 0)}{(16dcx^{2} + 16dc^{2}x + 48dcbx + 16dc^{2}b + 32dcb^{2} + 16dbx^{2} + 32db^{2}x + 16db^{3})} + 0\\=&\frac{16dcx}{(16dcx^{2} + 16dc^{2}x + 48dcbx + 16dc^{2}b + 32dcb^{2} + 16dbx^{2} + 32db^{2}x + 16db^{3})} + \frac{24dcb}{(16dcx^{2} + 16dc^{2}x + 48dcbx + 16dc^{2}b + 32dcb^{2} + 16dbx^{2} + 32db^{2}x + 16db^{3})} + \frac{8dc^{2}}{(16dcx^{2} + 16dc^{2}x + 48dcbx + 16dc^{2}b + 32dcb^{2} + 16dbx^{2} + 32db^{2}x + 16db^{3})} + \frac{16dbx}{(16dcx^{2} + 16dc^{2}x + 48dcbx + 16dc^{2}b + 32dcb^{2} + 16dbx^{2} + 32db^{2}x + 16db^{3})} + \frac{16db^{2}}{(16dcx^{2} + 16dc^{2}x + 48dcbx + 16dc^{2}b + 32dcb^{2} + 16dbx^{2} + 32db^{2}x + 16db^{3})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return