There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2x + 1)}^{3}{(x - 1)}^{4}{(x - 2)}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8x^{12} - 100x^{11} + 526x^{10} - 1483x^{9} + 2302x^{8} - 1582x^{7} - 498x^{6} + 1549x^{5} - 634x^{4} - 344x^{3} + 272x^{2} + 16x - 32\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8x^{12} - 100x^{11} + 526x^{10} - 1483x^{9} + 2302x^{8} - 1582x^{7} - 498x^{6} + 1549x^{5} - 634x^{4} - 344x^{3} + 272x^{2} + 16x - 32\right)}{dx}\\=&8*12x^{11} - 100*11x^{10} + 526*10x^{9} - 1483*9x^{8} + 2302*8x^{7} - 1582*7x^{6} - 498*6x^{5} + 1549*5x^{4} - 634*4x^{3} - 344*3x^{2} + 272*2x + 16 + 0\\=&96x^{11} - 1100x^{10} + 5260x^{9} - 13347x^{8} + 18416x^{7} - 11074x^{6} - 2988x^{5} + 7745x^{4} - 2536x^{3} - 1032x^{2} + 544x + 16\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !