There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2(x - a - 1){e}^{x} - {(x - a)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x{e}^{x} - 2a{e}^{x} - 2{e}^{x} - x^{2} + 2ax - a^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x{e}^{x} - 2a{e}^{x} - 2{e}^{x} - x^{2} + 2ax - a^{2}\right)}{dx}\\=&2{e}^{x} + 2x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2a({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2x + 2a + 0\\=& - 2a{e}^{x} + 2x{e}^{x} - 2x + 2a\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !