Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{2}(ln({({x}^{2} + 1)}^{\frac{1}{2}} - 1) - ln({x}^{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}ln((x^{2} + 1)^{\frac{1}{2}} - 1) - \frac{1}{2}ln(x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}ln((x^{2} + 1)^{\frac{1}{2}} - 1) - \frac{1}{2}ln(x^{2})\right)}{dx}\\=&\frac{\frac{1}{2}((\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}}) + 0)}{((x^{2} + 1)^{\frac{1}{2}} - 1)} - \frac{\frac{1}{2}*2x}{(x^{2})}\\=&\frac{x}{2((x^{2} + 1)^{\frac{1}{2}} - 1)(x^{2} + 1)^{\frac{1}{2}}} - \frac{1}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return