There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({({x}^{2} + 1)}^{\frac{1}{2}}) - ln({x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln((x^{2} + 1)^{\frac{1}{2}}) - ln(x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln((x^{2} + 1)^{\frac{1}{2}}) - ln(x^{2})\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}})}{((x^{2} + 1)^{\frac{1}{2}})} - \frac{2x}{(x^{2})}\\=&\frac{x}{(x^{2} + 1)} - \frac{2}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !