Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of r is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{({2}^{r} - 1)}{r} + \frac{1}{r}\ with\ respect\ to\ r:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{2}^{r}}{r}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{2}^{r}}{r}\right)}{dr}\\=&\frac{-{2}^{r}}{r^{2}} + \frac{({2}^{r}((1)ln(2) + \frac{(r)(0)}{(2)}))}{r}\\=&\frac{{2}^{r}ln(2)}{r} - \frac{{2}^{r}}{r^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{2}^{r}ln(2)}{r} - \frac{{2}^{r}}{r^{2}}\right)}{dr}\\=&\frac{-{2}^{r}ln(2)}{r^{2}} + \frac{({2}^{r}((1)ln(2) + \frac{(r)(0)}{(2)}))ln(2)}{r} + \frac{{2}^{r}*0}{r(2)} - \frac{-2 * {2}^{r}}{r^{3}} - \frac{({2}^{r}((1)ln(2) + \frac{(r)(0)}{(2)}))}{r^{2}}\\=&\frac{-2 * {2}^{r}ln(2)}{r^{2}} + \frac{{2}^{r}ln^{2}(2)}{r} + \frac{2 * {2}^{r}}{r^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return