There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{3}{2})arcsin(2)}{3} + (\frac{1}{2})sqrt(9 - 4({x}^{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}arcsin(2) + \frac{1}{2}sqrt(-4x^{2} + 9)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}arcsin(2) + \frac{1}{2}sqrt(-4x^{2} + 9)\right)}{dx}\\=&\frac{1}{2}(\frac{(0)}{((1 - (2)^{2})^{\frac{1}{2}})}) + \frac{\frac{1}{2}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 9)^{\frac{1}{2}}}\\=&\frac{-2x}{(-4x^{2} + 9)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !