There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(({2}^{x}) - 1)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{2}^{x}}{x} - \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{2}^{x}}{x} - \frac{1}{x}\right)}{dx}\\=&\frac{-{2}^{x}}{x^{2}} + \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{x} - \frac{-1}{x^{2}}\\=&\frac{{2}^{x}ln(2)}{x} - \frac{{2}^{x}}{x^{2}} + \frac{1}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{{2}^{x}ln(2)}{x} - \frac{{2}^{x}}{x^{2}} + \frac{1}{x^{2}}\right)}{dx}\\=&\frac{-{2}^{x}ln(2)}{x^{2}} + \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2)}{x} + \frac{{2}^{x}*0}{x(2)} - \frac{-2 * {2}^{x}}{x^{3}} - \frac{({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))}{x^{2}} + \frac{-2}{x^{3}}\\=&\frac{-2 * {2}^{x}ln(2)}{x^{2}} + \frac{{2}^{x}ln^{2}(2)}{x} + \frac{2 * {2}^{x}}{x^{3}} - \frac{2}{x^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !