There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{L}{tan(x)} - sqrt(\frac{L}{({tan(x)}^{2})} - 25)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{L}{tan(x)} - sqrt(\frac{L}{tan^{2}(x)} - 25)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{L}{tan(x)} - sqrt(\frac{L}{tan^{2}(x)} - 25)\right)}{dx}\\=&\frac{L*-sec^{2}(x)(1)}{tan^{2}(x)} - \frac{(\frac{L*-2sec^{2}(x)(1)}{tan^{3}(x)} + 0)*\frac{1}{2}}{(\frac{L}{tan^{2}(x)} - 25)^{\frac{1}{2}}}\\=&\frac{-Lsec^{2}(x)}{tan^{2}(x)} + \frac{Lsec^{2}(x)}{(\frac{L}{tan^{2}(x)} - 25)^{\frac{1}{2}}tan^{3}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !