Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(x - 1) - 2xsqrt(x + 1) + 2sqrt(x({x}^{2} - 1))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x - 1) - 2xsqrt(x + 1) + 2sqrt(x^{3} - x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x - 1) - 2xsqrt(x + 1) + 2sqrt(x^{3} - x)\right)}{dx}\\=&\frac{(1 + 0)*\frac{1}{2}}{(x - 1)^{\frac{1}{2}}} - 2sqrt(x + 1) - \frac{2x(1 + 0)*\frac{1}{2}}{(x + 1)^{\frac{1}{2}}} + \frac{2(3x^{2} - 1)*\frac{1}{2}}{(x^{3} - x)^{\frac{1}{2}}}\\=& - \frac{x}{(x + 1)^{\frac{1}{2}}} - 2sqrt(x + 1) + \frac{3x^{2}}{(x^{3} - x)^{\frac{1}{2}}} + \frac{1}{2(x - 1)^{\frac{1}{2}}} - \frac{1}{(x^{3} - x)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return