There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x - 10log_{10}^{{10}^{(\frac{(x - 20)}{10})}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - 10log_{10}^{{10}^{(\frac{1}{10}x - 2)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - 10log_{10}^{{10}^{(\frac{1}{10}x - 2)}}\right)}{dx}\\=&1 - 10(\frac{(\frac{(({10}^{(\frac{1}{10}x - 2)}((\frac{1}{10} + 0)ln(10) + \frac{(\frac{1}{10}x - 2)(0)}{(10)})))}{({10}^{(\frac{1}{10}x - 2)})} - \frac{(0)log_{10}^{{10}^{(\frac{1}{10}x - 2)}}}{(10)})}{(ln(10))})\\=& - {10}^{(\frac{1}{5}x - 4)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !