There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x - 10log_{10}^{{10}^{(\frac{(x - 20)}{10})} + 1}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - 10log_{10}^{{10}^{(\frac{1}{10}x - 2)} + 1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - 10log_{10}^{{10}^{(\frac{1}{10}x - 2)} + 1}\right)}{dx}\\=&1 - 10(\frac{(\frac{(({10}^{(\frac{1}{10}x - 2)}((\frac{1}{10} + 0)ln(10) + \frac{(\frac{1}{10}x - 2)(0)}{(10)})) + 0)}{({10}^{(\frac{1}{10}x - 2)} + 1)} - \frac{(0)log_{10}^{{10}^{(\frac{1}{10}x - 2)} + 1}}{(10)})}{(ln(10))})\\=& - \frac{{10}^{(\frac{1}{10}x - 2)}}{({10}^{(\frac{1}{10}x - 2)} + 1)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !