There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({e}^{x})}{({x}^{4})} - x - 1 - kln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{x}}{x^{4}} - x - kln(x) - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{x}}{x^{4}} - x - kln(x) - 1\right)}{dx}\\=&\frac{-4{e}^{x}}{x^{5}} + \frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{x^{4}} - 1 - \frac{k}{(x)} + 0\\=&\frac{-4{e}^{x}}{x^{5}} + \frac{{e}^{x}}{x^{4}} - \frac{k}{x} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !