There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(a{x}^{3} + b{x}^{2} + cx + d)}{(x - n)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ax^{3}}{(x - n)} + \frac{bx^{2}}{(x - n)} + \frac{cx}{(x - n)} + \frac{d}{(x - n)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ax^{3}}{(x - n)} + \frac{bx^{2}}{(x - n)} + \frac{cx}{(x - n)} + \frac{d}{(x - n)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - n)^{2}})ax^{3} + \frac{a*3x^{2}}{(x - n)} + (\frac{-(1 + 0)}{(x - n)^{2}})bx^{2} + \frac{b*2x}{(x - n)} + (\frac{-(1 + 0)}{(x - n)^{2}})cx + \frac{c}{(x - n)} + (\frac{-(1 + 0)}{(x - n)^{2}})d + 0\\=&\frac{-ax^{3}}{(x - n)^{2}} + \frac{3ax^{2}}{(x - n)} - \frac{bx^{2}}{(x - n)^{2}} + \frac{2bx}{(x - n)} - \frac{cx}{(x - n)^{2}} + \frac{c}{(x - n)} - \frac{d}{(x - n)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !