There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2}{e}^{x})}{({x}^{2} + {e}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}{e}^{x}}{(x^{2} + {e}^{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}{e}^{x}}{(x^{2} + {e}^{x})}\right)}{dx}\\=&(\frac{-(2x + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{(x^{2} + {e}^{x})^{2}})x^{2}{e}^{x} + \frac{2x{e}^{x}}{(x^{2} + {e}^{x})} + \frac{x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x^{2} + {e}^{x})}\\=&\frac{-2x^{3}{e}^{x}}{(x^{2} + {e}^{x})^{2}} - \frac{x^{2}{e}^{(2x)}}{(x^{2} + {e}^{x})^{2}} + \frac{2x{e}^{x}}{(x^{2} + {e}^{x})} + \frac{x^{2}{e}^{x}}{(x^{2} + {e}^{x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !