Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} - 4)}{(4{x}^{2} - 9x + 6)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(4x^{2} - 9x + 6)} - \frac{4}{(4x^{2} - 9x + 6)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(4x^{2} - 9x + 6)} - \frac{4}{(4x^{2} - 9x + 6)}\right)}{dx}\\=&(\frac{-(4*2x - 9 + 0)}{(4x^{2} - 9x + 6)^{2}})x^{2} + \frac{2x}{(4x^{2} - 9x + 6)} - 4(\frac{-(4*2x - 9 + 0)}{(4x^{2} - 9x + 6)^{2}})\\=&\frac{-8x^{3}}{(4x^{2} - 9x + 6)^{2}} + \frac{9x^{2}}{(4x^{2} - 9x + 6)^{2}} + \frac{2x}{(4x^{2} - 9x + 6)} + \frac{32x}{(4x^{2} - 9x + 6)^{2}} - \frac{36}{(4x^{2} - 9x + 6)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return