There are 1 questions in this calculation: for each question, the 1 derivative of B is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{B(a + c{B}^{2})}{e})\ with\ respect\ to\ B:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{aB}{e} + \frac{cB^{3}}{e}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{aB}{e} + \frac{cB^{3}}{e}\right)}{dB}\\=&\frac{a}{e} + \frac{aB*-0}{e^{2}} + \frac{c*3B^{2}}{e} + \frac{cB^{3}*-0}{e^{2}}\\=&\frac{a}{e} + \frac{3cB^{2}}{e}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !