There are 1 questions in this calculation: for each question, the 1 derivative of B is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{B(a + c{B}^{2})}{e(d + c{B}^{2})}\ with\ respect\ to\ B:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{aB}{(d + cB^{2})e} + \frac{cB^{3}}{(d + cB^{2})e}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{aB}{(d + cB^{2})e} + \frac{cB^{3}}{(d + cB^{2})e}\right)}{dB}\\=&\frac{(\frac{-(0 + c*2B)}{(d + cB^{2})^{2}})aB}{e} + \frac{a}{(d + cB^{2})e} + \frac{aB*-0}{(d + cB^{2})e^{2}} + \frac{(\frac{-(0 + c*2B)}{(d + cB^{2})^{2}})cB^{3}}{e} + \frac{c*3B^{2}}{(d + cB^{2})e} + \frac{cB^{3}*-0}{(d + cB^{2})e^{2}}\\=&\frac{-2acB^{2}}{(d + cB^{2})^{2}e} + \frac{a}{(d + cB^{2})e} - \frac{2c^{2}B^{4}}{(d + cB^{2})^{2}e} + \frac{3cB^{2}}{(d + cB^{2})e}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !