There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -2cot(2x) + \frac{{(tan(x))}^{3}}{3} + tan(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -2cot(2x) + \frac{1}{3}tan^{3}(x) + tan(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -2cot(2x) + \frac{1}{3}tan^{3}(x) + tan(x)\right)}{dx}\\=&-2*-csc^{2}(2x)*2 + \frac{1}{3}*3tan^{2}(x)sec^{2}(x)(1) + sec^{2}(x)(1)\\=&4csc^{2}(2x) + tan^{2}(x)sec^{2}(x) + sec^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !