Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(s - 2dsin(x))}{(xdsin(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{s}{dxsin(x)} - \frac{2}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{s}{dxsin(x)} - \frac{2}{x}\right)}{dx}\\=&\frac{s*-1}{dx^{2}sin(x)} + \frac{s*-cos(x)}{dxsin^{2}(x)} - \frac{2*-1}{x^{2}}\\=&\frac{-scos(x)}{dxsin^{2}(x)} - \frac{s}{dx^{2}sin(x)} + \frac{2}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-scos(x)}{dxsin^{2}(x)} - \frac{s}{dx^{2}sin(x)} + \frac{2}{x^{2}}\right)}{dx}\\=&\frac{-s*-cos(x)}{dx^{2}sin^{2}(x)} - \frac{s*-2cos(x)cos(x)}{dxsin^{3}(x)} - \frac{s*-sin(x)}{dxsin^{2}(x)} - \frac{s*-2}{dx^{3}sin(x)} - \frac{s*-cos(x)}{dx^{2}sin^{2}(x)} + \frac{2*-2}{x^{3}}\\=&\frac{2scos(x)}{dx^{2}sin^{2}(x)} + \frac{2scos^{2}(x)}{dxsin^{3}(x)} + \frac{s}{dxsin(x)} + \frac{2s}{dx^{3}sin(x)} - \frac{4}{x^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return