Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(1 - ln(x))}{(1 + ln(x))}) + (\frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-ln(x)}{(ln(x) + 1)} + \frac{1}{(ln(x) + 1)} + \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-ln(x)}{(ln(x) + 1)} + \frac{1}{(ln(x) + 1)} + \frac{1}{x}\right)}{dx}\\=&-(\frac{-(\frac{1}{(x)} + 0)}{(ln(x) + 1)^{2}})ln(x) - \frac{1}{(ln(x) + 1)(x)} + (\frac{-(\frac{1}{(x)} + 0)}{(ln(x) + 1)^{2}}) + \frac{-1}{x^{2}}\\=&\frac{ln(x)}{(ln(x) + 1)^{2}x} - \frac{1}{(ln(x) + 1)x} - \frac{1}{(ln(x) + 1)^{2}x} - \frac{1}{x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return