There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {x}^{4} + 2{x}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4} + 2x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4} + 2x^{3}\right)}{dx}\\=&4x^{3} + 2*3x^{2}\\=&4x^{3} + 6x^{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3} + 6x^{2}\right)}{dx}\\=&4*3x^{2} + 6*2x\\=&12x^{2} + 12x\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 12x^{2} + 12x\right)}{dx}\\=&12*2x + 12\\=&24x + 12\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !