Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{sinh(1)}{x} + \frac{cosh(1)}{x} - \frac{tanh(1)}{x} - \frac{coth(1)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sinh(1)}{x} + \frac{cosh(1)}{x} - \frac{tanh(1)}{x} - \frac{coth(1)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sinh(1)}{x} + \frac{cosh(1)}{x} - \frac{tanh(1)}{x} - \frac{coth(1)}{x}\right)}{dx}\\=&\frac{-sinh(1)}{x^{2}} + \frac{cosh(1)*0}{x} + \frac{-cosh(1)}{x^{2}} + \frac{sinh(1)*0}{x} - \frac{-tanh(1)}{x^{2}} - \frac{sech^{2}(1)*0}{x} - \frac{-coth(1)}{x^{2}} - \frac{-csch^{2}(1)*0}{x}\\=&\frac{-sinh(1)}{x^{2}} - \frac{cosh(1)}{x^{2}} + \frac{tanh(1)}{x^{2}} + \frac{coth(1)}{x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return