There are 1 questions in this calculation: for each question, the 1 derivative of m is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{147.255}{(1 + {e}^{(3.831 - 0.379m)})}\ with\ respect\ to\ m:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{147.255}{({e}^{(-0.379m + 3.831)} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{147.255}{({e}^{(-0.379m + 3.831)} + 1)}\right)}{dm}\\=&147.255(\frac{-(({e}^{(-0.379m + 3.831)}((-0.379 + 0)ln(e) + \frac{(-0.379m + 3.831)(0)}{(e)})) + 0)}{({e}^{(-0.379m + 3.831)} + 1)^{2}})\\=&\frac{55.809645{e}^{(-0.379m + 3.831)}}{({e}^{(-0.379m + 3.831)} + 1)({e}^{(-0.379m + 3.831)} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !