There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(e^{xsqrt(sin(x))})}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{{xsqrt(sin(x))}*{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{xsqrt(sin(x))}*{3}}\right)}{dx}\\=&3e^{{xsqrt(sin(x))}*{2}}e^{xsqrt(sin(x))}(sqrt(sin(x)) + \frac{xcos(x)*\frac{1}{2}}{(sin(x))^{\frac{1}{2}}})\\=&3e^{{xsqrt(sin(x))}*{3}}sqrt(sin(x)) + \frac{3xe^{{xsqrt(sin(x))}*{3}}cos(x)}{2sin^{\frac{1}{2}}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !