There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{x}sqrt(sin(x))*3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3e^{x}sqrt(sin(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3e^{x}sqrt(sin(x))\right)}{dx}\\=&3e^{x}sqrt(sin(x)) + \frac{3e^{x}cos(x)*\frac{1}{2}}{(sin(x))^{\frac{1}{2}}}\\=&3e^{x}sqrt(sin(x)) + \frac{3e^{x}cos(x)}{2sin^{\frac{1}{2}}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !