There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - 100x)((2x{\frac{1}{e}}^{x} + 10) - 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x{\frac{1}{e}}^{x} - 200x^{2}{\frac{1}{e}}^{x} - 900x + 9\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x{\frac{1}{e}}^{x} - 200x^{2}{\frac{1}{e}}^{x} - 900x + 9\right)}{dx}\\=&2{\frac{1}{e}}^{x} + 2x({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) - 200*2x{\frac{1}{e}}^{x} - 200x^{2}({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) - 900 + 0\\=&2{\frac{1}{e}}^{x} - 402x{\frac{1}{e}}^{x} + 200x^{2}{\frac{1}{e}}^{x} - 900\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !