There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(x) - 2xsqrt(2) + \frac{a{x}^{2}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x) - 2xsqrt(2) + \frac{1}{2}ax^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x) - 2xsqrt(2) + \frac{1}{2}ax^{2}\right)}{dx}\\=&\frac{1}{(x)} - 2sqrt(2) - 2x*0*\frac{1}{2}*2^{\frac{1}{2}} + \frac{1}{2}a*2x\\=&\frac{1}{x} - 2sqrt(2) + ax\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !