There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt({x}^{2}{\frac{1}{({x}^{2} + 1)}}^{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{x^{2}}{(x^{2} + 1)^{3}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{x^{2}}{(x^{2} + 1)^{3}})\right)}{dx}\\=&\frac{((\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x^{2} + \frac{2x}{(x^{2} + 1)^{3}})*\frac{1}{2}}{(\frac{x^{2}}{(x^{2} + 1)^{3}})^{\frac{1}{2}}}\\=&\frac{-3x^{2}}{(x^{2} + 1)^{\frac{5}{2}}} + \frac{1}{(x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !