There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {3}^{x} + {3}^{(\frac{(4)}{(x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {3}^{x} + {3}^{(\frac{4}{x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {3}^{x} + {3}^{(\frac{4}{x})}\right)}{dx}\\=&({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)})) + ({3}^{(\frac{4}{x})}((\frac{4*-1}{x^{2}})ln(3) + \frac{(\frac{4}{x})(0)}{(3)}))\\=&{3}^{x}ln(3) - \frac{4 * {3}^{(\frac{4}{x})}ln(3)}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !