There are 1 questions in this calculation: for each question, the 1 derivative of q is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {q}^{2} + {(n - q - 1)}^{2}\ with\ respect\ to\ q:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2q^{2} - 2nq + n^{2} - 2n + 2q + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2q^{2} - 2nq + n^{2} - 2n + 2q + 1\right)}{dq}\\=&2*2q - 2n + 0 + 0 + 2 + 0\\=&4q - 2n + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !