There are 1 questions in this calculation: for each question, the 8 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 8th\ derivative\ of\ function\ {e}^{{sin(x)}^{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{sin^{2}(x)}\\\\ &\color{blue}{The\ 8th\ derivative\ of\ function:} \\=&256{e}^{sin^{2}(x)}sin^{8}(x)cos^{8}(x) + 3584{e}^{sin^{2}(x)}sin^{6}(x)cos^{8}(x) - 3584{e}^{sin^{2}(x)}sin^{8}(x)cos^{6}(x) + 13440{e}^{sin^{2}(x)}sin^{4}(x)cos^{8}(x) - 41216{e}^{sin^{2}(x)}sin^{6}(x)cos^{6}(x) + 13440{e}^{sin^{2}(x)}sin^{8}(x)cos^{4}(x) + 13440{e}^{sin^{2}(x)}sin^{2}(x)cos^{8}(x) - 120960{e}^{sin^{2}(x)}sin^{4}(x)cos^{6}(x) + 120960{e}^{sin^{2}(x)}sin^{6}(x)cos^{4}(x) - 13440{e}^{sin^{2}(x)}sin^{8}(x)cos^{2}(x) + 1680{e}^{sin^{2}(x)}cos^{8}(x) - 87360{e}^{sin^{2}(x)}sin^{2}(x)cos^{6}(x) + 257376{e}^{sin^{2}(x)}sin^{4}(x)cos^{4}(x) - 87360{e}^{sin^{2}(x)}sin^{6}(x)cos^{2}(x) + 116928{e}^{sin^{2}(x)}sin^{2}(x)cos^{4}(x) - 6720{e}^{sin^{2}(x)}cos^{6}(x) - 116928{e}^{sin^{2}(x)}sin^{4}(x)cos^{2}(x) - 24448{e}^{sin^{2}(x)}sin^{2}(x)cos^{2}(x) + 4032{e}^{sin^{2}(x)}cos^{4}(x) + 1680{e}^{sin^{2}(x)}sin^{8}(x) + 6720{e}^{sin^{2}(x)}sin^{6}(x) + 4032{e}^{sin^{2}(x)}sin^{4}(x) - 128{e}^{sin^{2}(x)}cos^{2}(x) + 128{e}^{sin^{2}(x)}sin^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !