There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(sqrt(1 - x)sqrt(x + 1)(({x}^{2}) - 1))}{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x^{2}sqrt(-x + 1)sqrt(x + 1) - \frac{1}{3}sqrt(-x + 1)sqrt(x + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x^{2}sqrt(-x + 1)sqrt(x + 1) - \frac{1}{3}sqrt(-x + 1)sqrt(x + 1)\right)}{dx}\\=&\frac{1}{3}*2xsqrt(-x + 1)sqrt(x + 1) + \frac{\frac{1}{3}x^{2}(-1 + 0)*\frac{1}{2}sqrt(x + 1)}{(-x + 1)^{\frac{1}{2}}} + \frac{\frac{1}{3}x^{2}sqrt(-x + 1)(1 + 0)*\frac{1}{2}}{(x + 1)^{\frac{1}{2}}} - \frac{\frac{1}{3}(-1 + 0)*\frac{1}{2}sqrt(x + 1)}{(-x + 1)^{\frac{1}{2}}} - \frac{\frac{1}{3}sqrt(-x + 1)(1 + 0)*\frac{1}{2}}{(x + 1)^{\frac{1}{2}}}\\=&\frac{2xsqrt(-x + 1)sqrt(x + 1)}{3} - \frac{x^{2}sqrt(x + 1)}{6(-x + 1)^{\frac{1}{2}}} + \frac{x^{2}sqrt(-x + 1)}{6(x + 1)^{\frac{1}{2}}} + \frac{sqrt(x + 1)}{6(-x + 1)^{\frac{1}{2}}} - \frac{sqrt(-x + 1)}{6(x + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !