There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 0.5{x}^{2}{(sin(x))}^{2} + 0.5{x}^{2}cos(2)x - 0.5xsin(2)x - 0.25cos(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.5x^{2}sin(x)sin(x) + 0.5x^{3}cos(2) - 0.5x^{2}sin(2) - 0.25xcos(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.5x^{2}sin(x)sin(x) + 0.5x^{3}cos(2) - 0.5x^{2}sin(2) - 0.25xcos(2)\right)}{dx}\\=&0.5*2xsin(x)sin(x) + 0.5x^{2}cos(x)sin(x) + 0.5x^{2}sin(x)cos(x) + 0.5*3x^{2}cos(2) + 0.5x^{3}*-sin(2)*0 - 0.5*2xsin(2) - 0.5x^{2}cos(2)*0 - 0.25cos(2) - 0.25x*-sin(2)*0\\=&xsin(x)sin(x) + 0.5x^{2}sin(x)cos(x) + 0.5x^{2}sin(x)cos(x) + 1.5x^{2}cos(2) - xsin(2) - 0.25cos(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !