There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sqrt(\frac{hh}{(sin(x)sin(x))} - hh)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{h^{2}}{sin^{2}(x)} - h^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{h^{2}}{sin^{2}(x)} - h^{2})\right)}{dx}\\=&\frac{(\frac{h^{2}*-2cos(x)}{sin^{3}(x)} + 0)*\frac{1}{2}}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}}\\=&\frac{-h^{2}cos(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{3}(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-h^{2}cos(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{3}(x)}\right)}{dx}\\=&\frac{-(\frac{\frac{-1}{2}(\frac{h^{2}*-2cos(x)}{sin^{3}(x)} + 0)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{3}{2}}})h^{2}cos(x)}{sin^{3}(x)} - \frac{h^{2}*-3cos(x)cos(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{4}(x)} - \frac{h^{2}*-sin(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{3}(x)}\\=&\frac{-h^{4}cos^{2}(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{3}{2}}sin^{6}(x)} + \frac{3h^{2}cos^{2}(x)}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{4}(x)} + \frac{h^{2}}{(\frac{h^{2}}{sin^{2}(x)} - h^{2})^{\frac{1}{2}}sin^{2}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !