Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xln(x)cos(tan(csc({x}^{x})))arccos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(x)cos(tan(csc({x}^{x})))arccos(x)\right)}{dx}\\=&ln(x)cos(tan(csc({x}^{x})))arccos(x) + \frac{xcos(tan(csc({x}^{x})))arccos(x)}{(x)} + xln(x)*-sin(tan(csc({x}^{x})))sec^{2}(csc({x}^{x}))(-csc({x}^{x})cot({x}^{x})({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})))arccos(x) + xln(x)cos(tan(csc({x}^{x})))(\frac{-(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&ln(x)cos(tan(csc({x}^{x})))arccos(x) + cos(tan(csc({x}^{x})))arccos(x) + x{x}^{x}ln^{2}(x)sin(tan(csc({x}^{x})))arccos(x)cot({x}^{x})sec^{2}(csc({x}^{x}))csc({x}^{x}) + x{x}^{x}ln(x)sin(tan(csc({x}^{x})))arccos(x)cot({x}^{x})sec^{2}(csc({x}^{x}))csc({x}^{x}) - \frac{xln(x)cos(tan(csc({x}^{x})))}{(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return