There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2{x}^{3} + 3x)}^{3}{(1 - 2x)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 128x^{13} + 768x^{11} + 1736x^{9} + 1764x^{7} - 1216x^{10} - 256x^{12} - 2016x^{8} - 1296x^{6} + 702x^{5} - 216x^{4} + 27x^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 128x^{13} + 768x^{11} + 1736x^{9} + 1764x^{7} - 1216x^{10} - 256x^{12} - 2016x^{8} - 1296x^{6} + 702x^{5} - 216x^{4} + 27x^{3}\right)}{dx}\\=&128*13x^{12} + 768*11x^{10} + 1736*9x^{8} + 1764*7x^{6} - 1216*10x^{9} - 256*12x^{11} - 2016*8x^{7} - 1296*6x^{5} + 702*5x^{4} - 216*4x^{3} + 27*3x^{2}\\=&1664x^{12} + 8448x^{10} + 15624x^{8} + 12348x^{6} - 12160x^{9} - 3072x^{11} - 16128x^{7} - 7776x^{5} + 3510x^{4} - 864x^{3} + 81x^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !