There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{2} - 5sqrt(2)x + 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - 5xsqrt(2) + x^{2} + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - 5xsqrt(2) + x^{2} + 2\right)}{dx}\\=& - 5sqrt(2) - 5x*0*\frac{1}{2}*2^{\frac{1}{2}} + 2x + 0\\=& - 5sqrt(2) + 2x\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - 5sqrt(2) + 2x\right)}{dx}\\=& - 5*0*\frac{1}{2}*2^{\frac{1}{2}} + 2\\=&2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !