Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {sqrt(9)}^{(e^{3}xsish(\frac{1}{5}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {sqrt(9)}^{(sixe^{3}sh(\frac{1}{5}))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {sqrt(9)}^{(sixe^{3}sh(\frac{1}{5}))}\right)}{dx}\\=&({sqrt(9)}^{(sixe^{3}sh(\frac{1}{5}))}((sie^{3}sh(\frac{1}{5}) + sixe^{3}*0sh(\frac{1}{5}) + sixe^{3}ch(\frac{1}{5})*0)ln(sqrt(9)) + \frac{(sixe^{3}sh(\frac{1}{5}))(0*\frac{1}{2}*9^{\frac{1}{2}})}{(sqrt(9))}))\\=&si{sqrt(9)}^{(sixe^{3}sh(\frac{1}{5}))}e^{3}ln(sqrt(9))sh(\frac{1}{5})\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return